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FOREWORD

This report describes an in-house effort conducted by personnel of the Laser and
Optical Materials Branch (MLPO), Electromagnetic Materials Division (MLP), Materials
Laboratory, in collaboration with personnel of the Electronic Research Branch (AADR),
Avionics Laboratory. A1) are parts of the Air Force Wright Aeronautical Laboratories
(AFWAL), Wright-Patteison Air Force Base, Ohio 45433. Part of the work was performed
bv Universal Energy Systems, 4401 Dayton-Xenia Road, Dayton, Ohio 45432. David C.
Ingram was supported by the Visiting Scientist program of the Materials Laboratory,
Contract F 33615-82-C-5001. Nils C. Fernelius is a National Research Council Senior
Research Associate.

The work reported herein was performed during the period July 1983 to July 1984
by the authors. It is part of the Laser Annealing Project of HWork Unit Directive
48 - Electro-Optical Materials, Job Order Number 2306Q106.
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SECTION I

INTRODUCTINN

1. SILICON FILMS

High quality single crystal silicon films on insulating substrates are required
to fabricate dielectrically isolated metal-oxide-semiconductor (MOS) devices. To
achieve devices small enough for very large scale integrated (VLSI) circuits,
sub-micrometer thickness silicon films are necessary. Ultimatelv one hopes ton
prepare films whose electrical properties approach those of bulk silicon. As
currently fabricated, silicon films are deposited at elevated temperatures onto
substrates with a coefficient of linear expansion different for that of silicon.

When cooled back to room temperature, the films consequently develop strain and may
exhibit twinning. Silicon-on-sapphire (S0S) is the most developed technology of the
various silicon film efforts. There were some early studies on effects of defects
and stress on electrical properties of the films as grown (References 1 and 2). A
number of processes were developed to improve the quality of these films (References
3-16). In general these processes involve ion implantation of Si* into the films to
create amorphous regions. Often one desires an amorphous region which comes close to
the substrate-film interface but which does not disturb the interface too much. An
implant which disturbs the substrate significantly can lead to serious aluminum
autodoping in the case of SOS. Also, a small crystalline region at the outer surface
of the film is required as a seed for the recrystallization process. By various
annealing treatments, the films are then recrystallized. This may be by furnace,
lamp, laser or glow bar annealing.

Theoretical calculations seldom predict the extent of amorphous regions better
than a factor of two. There even seems to be some variation in the extent of
amorphous regions generated by identical implanters in different locations. Thus it
is necessary to know the properties of a given instrument and sample mounting
arrangement before designing treatments for a given batch of films.

The main effort of this work is to describe the properties of the Air Force
Wriaht Aeronautical Laboratories (AFWAL) Varian 400-10AR Ion Implanter owned by the
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Electronic Technology Division of the Avionics Laboratorv (AAD). It is operated by
AADR. TIts nominal operating range is from 50 keV to 380 keV. Under extreme
conditions 400 keV is possible. Universal Energy Systems has a General lonex
Corporation, Newburvport, MA, 1.7 MV Tandetron accelerator. It provides 0.4 - 4.5
MeY He particles which are used in Rutherford Backscattering analysis. It can also
be used as a higher energy ion implanter, normally working in the range of 400 keV to
6 MeV. However it can still operate fairly efficiently at 380 keV to provide a
comparison with the Varian instrument.

The main thrust of this work is to obtain the instrumental conditions on the
machines to amorphize 0.3 micron and 0.5 micron thick silicon (100) films for
recrystallization. Table 1 1ists the recipes reported by other workers in this field
on related projects. The general concensus seems to be for 0.3 micron Si films
implanted with si* to use 130-200 keV ions with doses of 5 x ]014 to 2 x 1015
ions/cm2 and for 0.5 micron films, 260-300 keV ions at 1-2 x 1015 ions/cmz. Svensson
et al. (Reference 17) quotes an energy density criterion that 1021 keV/cm3 results in
amorphous silicor. Thus for 0.3 microﬁ films we obtain upper and Tower limits of 13
X ]O21 keV/cm3 and 2.2 x 1021 keV/cm3- 2 to 13 times larger thén the criterion. For
0.5 micron films 12-5.2 x 1021 keV/cm3 —5 to 12 times larger.

The difference is due, in part, to the inefficiency of the displacement process
in that some atoms, althouah receiving sufficient energy for removal from their
lattice site, relax or recombine with their original or other vacant lattice site.
This effect is also temperature sensitive. Also, at these energies, only 50-70% of
the energv of the implanted ions is available for the displacement process; the
remainder is dissipated directly in the electronic excitation process.

2. [ON IMPLANTATION

The subject of ion implantation has been covered by a number of review articles
and books (Reference 18-28). To avoid channeling complications in depth ranges, we
have mounted our samples on a plane whose normal is inclined 7°to the incoming beam.
Also to avoid planar channeling, the silicon (100) samples were mounted at a 7° tilt
with the horizontal. Thus the theory developed for a random solid should describe
the situation well,

_____ e e e -
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From these results it appears that the best set of values to amorphize a 0.3 micron

silicon,film mounted in this arrangement is 5 x 1014 ions/cm2 @ 150 keV or 2 x 1014
jons/cm~ @ 200 keV. For 0.5 micron Si films, it appears that a dosage greater than 5

x 1014 jons/cm® @ 200 keV or greater than 2 x 101 jons/cm? @ 250 keV are the
amorphization dosages.
1% ions/cm? @ 180 keV

(Figure 7) appears to be a satisfactory combination for 0.3 micron films while 1 x
15

On the second batch of runs on the Varian, 5 x 10

ions/cm2 (Figure 8) would disturb the rear interface. For 0.5 micron films, 5 x
1014 1'ons/cm2 @ 250 keV (Figure 9) seems a bit better than 2 x 1014. Near the

14 ions/cm2 @ 275 keV (Figure 10) seems a bit better than
250 keV provided enough crystal is left on the outer surface as a seed. About the
same can be said for 1 x 1015 ions/cm2 @ 275 keV (Figure 11) although the interface
is more likely to be disturbed. Figure 12 shows that 2 x 1014 ions/cm2 @ 300 keV
might be used although a large amount of crystalline surface area remains. Figure 13

14 ions/cm2 dose @ 120 keV. Note that
14

substrate interface, 5 x 10

is the same as Figure 12 followed by a 2 x 10
most of the region out to the surface is now amorphized. Dosages of 5 x 10
jons/cm? @ 300 keV (Figure 14) and 1 x 1012 ions/cm® @ 325 keV (Figure 15) would
destroy the interface at a 500 nm depth (0.5 micron).

Several samples were run on the Tandetron implanter at UES with the samples
essentially suspended in free space. Figure 16 shows the results of 1 x 1015
ions/cm2 @ 180 keV. This should be compared with Figure 8, The two traces are
relatively similar with the UES sample showing more crystalline regions at the
surface and the amorphous region extending only 300 nm deep instead of 350 nm.
Figures 9 and 17 exhibit dosages of 5 x 1014 1'ons/cm2 @ 250 keV. These exhibit
drastic differences. The UES sample is amorphous (maybe never totally amorphous)
only between 220 and 290 nm, while the sample on the LN? dewar is amorphous between
10 and 380 nm. Fiqures 1?2 and 18 show dosages of 2 x 1614 ions/cm2 @ 300 keV.

Here the UES sample never really shows an amorphous region. Figures 14 and 19
14 ions/cm2 @ 300 keV. Both have roughly the same shape
with the cooled sample approaching the random spectrum a bit more. Thus there seem

to be considerable differences between the results on some of these samples.

display dosages of 5 x 10

Experimentally the major difference seems to be the temperature of the trrget.

To resnlve some nf these discrepancies, a third batch of samples were run on the

varian instrument.  This time the dewar was left at room temperature. Two samples

16
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SECTION II
EXPERIMENTAL WORK

As stated in the introduction, the purpose of this work was to ascertain the
experimental conditions to amorphize 0.3 and 0.5 micron thick silicon (100) films for
recrystallization using two implanters located in Dayton, Ohio. One desires a small
crystalline region on the surface to serve as a seed in the recrystallization
process. Also one does not wish to disturb the interface between the film and the
substrate since this would tend to introduce impurities into the film from the
substrate.

The samples implanted by the Avionics Laboratory implanter were (100) bulk
silicon which was n-type due to P doping. They were 12 mm x 12 mm x 0.5 mm squares,
cut from 2 inch diameter silicon wafers. The samples run on the UES machine were
(111) silicon. The results should be comparable since the samples were oriented to
appear like a random lattice target to the incoming ion beam.

At the Avionics machine the samples were mounted horizontally off by about 7°.
The target block which incorporates a dewar was then rotated to be 7° off the normal
to the beam. Thus axial and planar channeling were avoided. Half the sample was

covered with aluminum foil. Thus half the sample was undamaged. In this portion
the optimal channeling direction could be obtained in Rutherford backscattering
measurements, then the sample could be translated sideways and the spectrum in that
direction in the damaged part of the crystal could be obtained.

Most samples were attached tn the stainless steel dewar mounting block by
glueing them on with rubber cement. Thus there was considerable thermal isolation
between the sample and the dewar. The temperature of the sample was probably
significantly different from that of the dewar, especially for high energy and/or
high dosage runs, The first batch of samples on the Varian instrument were run at
room temperature and were not half covered by aluminum foil. It was almost
impnssible to determine a channeling direction on them, so further analvsis on them
was abandoned. The second batch of samples on the Varian were half covered with
aluminum foil and the dewar filled with liquid nitrogen. Various dosages were
obtained with 150, 200 and 250 keV energy Si*2® implants. See Figures 4, 5, and 6.

12
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Figure 3. Definition of Angles and Depths in Rutherford Backscattering Measurements
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spectrum, one measures the yield. The fraction that it is to the random beam, X (x)
YA(x)/YR(x) at equal depths, can be used as a measure of the quality of the single
crystal. If the crystal has been damaged by a previous implant, the actual observed
spectrum lies between the two extremes. If half the sample is covered with aluminum
foil during the silicon implant, then the sample can be oriented along a channeling
direction using the undamaged part of the crystal. Next, the crystal is translated in
the channeling orientation and a spectrum of the damaged part of the crystal is
cbtained with some confidence that the orientation is proper. Thus, one can compare
the channeled spectrum in the undamaged part of the crystal, which provides a measure
of the original crystal quality, with the damaged region and the random spectrum.

One other problem is to convert the energy scale into a depth scale from the
surface of the target. See Figure 3. F  is the incoming beam energy. Eb(x) is
the beam energy at the detector of particles scattered at x. Assume a constant
stopping power for the ingoing path, S(EO), and a constant stopping power for the
outgoing path, S(KES). The energy difference between particles scattered at the
surface and at a depth x is

KS(E_) + S(KE )
) X 0 S
0 b cose] cose2

So any measured energy difference can be converted into a depth, if reliable values
of S are available from tables.

The depth scale that is drawn on the spectra shown in the experimental section
is generated with the RBS simulation computer program which we obtained from Agronne
National Laboratory. The zero for the depth scale corresponds to scattering from the
surface. The energy for scattering from the surface is ES = KmE0 where Eo is
the incident energy and Km is the kinematic factor for Si with the detector at
105°, Using the simulation program, the energy of a He ion scattered from a depth of
109, 20G, 300, and 400 nm can be obtained. In the case of 100 nm, the computer code
uses 40, 2.5 nm thick layers to compose the 100 nm layer. The stopping power is
calculated for each layer. The computer code generates a spectrum on the display.
From the display the energy for scattering from 100 nm can be obtained.

10
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Random spectrum

Backscattering yield Y(E)
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Beam
Energn

e > Energy
0

Depth into material x
Si surface

KE

YR 0

min A/

Figure 2. Schematic Rutherford Backscattering Yield Plots for Random and
Aligned Directions Versus Energy

--------
FRTSUA IR N - Y

el e e S I A o i I .

RN S AR CORMERR T R e A A TG T A R SV N S

PO ST PP T D) -..-.e'.l-'_-'_p‘.-'.'.'\_"-\- N W T NN T A L A L ) SRRy ¥
kAT OIS R A AR SRR ORI VL P MGy




.
£

AFWAL-TR-84-4115

final fate at times greater than 10'9 seconds after the impinging ion has come to
rest. Thus any displaced atoms which relax back onto a lattice site or are able to

T T T AN ST

diffuse to a vacant lattice site will not be among those which remain displaced.

Such effects can reduce the displacement efficiency by an order of magnitude
(Reference 37) (p.169 of Reference 27). Thus a critical parameter is the temperature
of the sample during implantation.

CEEs S

According to the model of Morehead and Crowder (Reference 37), the major factors

DRI AR

for the formation of a continuous amorphous layer are the ion mass, dose and target
i temperature. Some less important variables are dose rate and ion energy. However if
the layer is desired at a specified depth and width in the sample, the ion energy
takes on major importance.

4. RUTHERFORD BACKSCATTERING AND CHANNELING

IR o IV FRE

The experimental technique used to characterize the amorphous region is
Rutherford backscattering channeling (References 27 and 38). A beam of high energy
_ light particles, usually 1-2 MeV He+, hits the target mounted on a goniometer located
i inside a vacuum system, After striking the target some of the beam is scattered and
E is detected by a solid state detector within a given solid angle as a series of
= pulses. The height of the pulses depends on the energy of the particle entering the
detector. After a period of time, the output of a multichannel analyzer looks
I something 1ike that shown in Figure 2. The energy of a particle of mass Ml, energy
Eo, scattering from a partic]; of mass M22at the surface of the target is E = K Eo’

Mjcose + (Mg - M sinze)v2
and 8 is the scattering angle in the

h =
where K M] A

2

’ laboratory system. For He* scattering from Si at e = 113°, K = 0.840, for M

=4, .
2 2 '| s
M, = 28, M7 = 784 and M$ = 16, so that the abo i :
2 M cos & + M 2 1 ve expression can be approximated as

o= 2 | - 0.857

- T T
R N )

A typical amorphous or randomly excited single crystal spectrum is shown in
Figure 2. (See e.q. Reference 27, esp. pp. 87-93). If a crystal is oriented so that
one is along a channeling direction, a spectrum as shown is obtained. The yield
never reaches zero since there will always be scattering from the ends of close
3 packed rows of atoms in the target. At the minimum of the yield in the aligned

LT

'''''''''''''''''''''''''''''''''''
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3. DAMAGE DISTRIBUTION AND ATOMIC DISPLACEMENT DUE TO ION IMPLANTATION

As an implanted ion traverses into a target, it loses energy via collisions
until it is stopped. An individual ion tends to produce a damage cluster reqion
roughly in the shape of a cylinder. In many cases enough energy is imparted to
target atoms to displace them from their initial location. Sometimes enough energy
is imparted to permanently displace them, and other times they are displaced only for
a given period of time. These damage clusters and their interaction promotes the
crystalline-to-amorphous transition in regions of the target. The thenretical work
of Kinchin and Pease (Reference 34) provides a framework to analyze data. Their
estimate for the number of atoms displaced by the "average" ion is Nd = En/2Ed,
where En is the area under the damage density (dv/dx) versus x, depth in solid,
curve. Ed is the displacement energy for a target atom. For almost all solids and
implant orientations, it is within an order of magnitude of 15 eV.

The heat generated by the implantation process tends to promote atoms hopping in
to heal much of the damage generated in some sort of healing process. Thus, targets
which are cooled tend to have deeper and more pronounced amorphous regions. Hence in
characterizing the amorphous region generated, the substrate temperature is an
important quantity along with the implanted ion's energy and dose.

Reference 27 has an extended discussion on damage and the creation of amorphous
regions in its Chapter 5, especially pp. 124-138. In all cases discussed, plots of
disorder, D, depth profiles have roughly the same shape as the calculated range, R,
but always have a peak occurring nearer the surface of the target than the peak in
the the range. Experiments indicate that in Si about twice as many defects are
generated than predicted by theory. In GaAs the measured number of defects is less
than predicted by theory.

Crowder and Title (Reference 35) made a study of the peak in the damage of the
silicon lattice with respect to the peak of the ion depth distribution. All these
studies used incident energies below 300 keV and dosaaes of 1012-1014 ions/cmz.

For 5129 with 150 keV energy at 2 x 10]3 ions/dm2 dose, the damage peak was 140 nm
while the ion peak was at 220 nm. The ratio of these distances was 0.6. All the

ions studied had a ratio in the 0.5 to 0.7 range.

The Kinchin and Pease model (Reference 34), and the variants thereto (Reference
36) only consider the displacement of atoms. They are not concerned with their
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The implanted ion loses energy to atoms in the target by two independent
processes, namely nuclear (elastic) and electronic (inelastic) collisions. The
relative importance of these two energy-loss mechanisms varies with the kinetic
energy EO and the atomic number z, of the bombarding particles. Nuclear stopping
predominates for low E and high 5 electronic stopping predominates for high Eo and
Tow z;. As long as the velocity of the particle in matter is large compared with the
speed 23V, (vo = ez/h = 2.2 X 108 cm/sec) of its electrons in the innermost orbit, the

particle is stripped of its electrons and moves as an ion through the target. The
maximum of the stopping power curve usually lies a bit above the Thomas-Fermi
velocity, Vi = 212/3vo' This value can be used to separate which loss r;gime
predominates. For silicon with zl=14 and M=28 amu, we have vTF=12.8 x 107 cm/sec and
E = 2,37 MeV. Thus according to this analysis, almost all energy loss in our
experiments, where E was never above 380 keV incident enerqy, is due to nuclear
collisions. However, as we shall see, this rough estimate sets the cut off about an
order of magnitude too high.

Several books of tables of ion implantation range data are available (References
29-32). We shall follow the results in the book by Bernard Smith (Reference 32). He
calculates the distance a particle travels in from the surface to where it stops,

Rp, the projected range. As a first approximation, one assumes that the final
spatial resolution is Gaussian with a standard deviation in range 4R. The tables are
obtained by solving the range distribution equations of Lindhard, Scharff and Schiott
(LSS) (Reference 33). A fundamental assumption of the LSS theory is that the target
is amorphous. Thus our choice of orienting the sample closely approximates that
situation. The low energy section of the energy loss versus ion energy follows the
relationship, S, = k EP.

For Si into Si, from Table 1 of page xi in Smith's tables (Reference 32), k =
3.01 x 10'15 chmz/keVp and p = 0.55. Figure 1 shows plots of values in
Smith's tables for Si into Si over the energy range available to us. From them we
see that the stopping power of Se and Sn are equal in magnitude at 170 keV, a
much Tower value than the estimate in the previous paragraph. In many situations in
ion implantation, calculations can only give an order of magnitude result. Thus for
precise work, it is necessary to measure the guantities experimentally on standard
samples for various experimental conditions, e.g. target temperature.
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- TABLE 1 (Concluded)

: DOSL  ANGLE

: Hewlett-Packard 0.2 pm (100) 130 10 0° 960°C for 2 hours 12
Si on (1102) in H, atmosphere

removes 500A of Si

etch in HC1 in Hz.remowe another 600-800%
last of top used as seed material
grow an additional 0.45-0.55 pm epitaxial Si

" " 0.3-0.67 pm 200 10 0° 550°c-950°C 13
(100) Si on 300 for about 2 hours
X (1102) ggg typical flux lolsions/cmzsec 950°gave better Xtal
- " " (001) si (D  less than 250 nm Si oTssugitrate @ 960°C o 14
on (1102) @) 55-130keV implant 10 “em 2 hrs @960-1050°C in H,
@ etch off 50-100 nm with RC1 in H,
CVD deposit 450-550 nm Si
Naval Ocean 0.45-0.8 pm 265 10-20 120 min @ 5402C 15
Systems Command (100) Ssi films then 60 min @ 950 C
LU TR TR 1] 2 step an eal
0.3pm st (Ds0,170 10 @ 3 hours € 550°C 16
@ | hour @ 1050°C in flowing N,
@100 20 (D 3 hrs @ 550°C
amorphizes surface (2) 3 hrs @ 550 C,
72 hrs @ 1050 C
Chalmers U, 1 um (100) Si 300 RT 10 I 7° 2 ion bgam annealéng 17
on (1102) rate 5x10'1ions/cm®s  @200°C a28N3g0 C with
300 keV e 16 2
7.5x10" - }20x10 iogs/cm
rate 3x10 “ ions/em’s
4
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SUMMARY OF SOS RECRYSTALLIZATION USING it

TABLE 1

IMPLANTATION AND HEAT TREATMENTS

Si FILM ION TARGET IMPLANTATION HEAT REFERENCE
THICKNESS & ENERGY TEMPERATURE DOSE ANGLE TREATMENT
ORIENTATION in keV 10'%ions/cm? furnace anneal
o unless stated otherwise
Mayer 0.6 pm_(100)  80-550 LN, 3-10 7 550°C for 70 min 3
on (1102)
Golecki 0.6 fam 550 -700C 7 410 560°C in 4
360 3 vacuo or flowing
438 RT 28 <1° Helium
" 0.2 - 0.5 pm 198.2 pmy 25°C 10 7° 578°C in vacuo 5
(100) CVD Si on < pm 40 min &
(1To02) 360 25°C 17 7°  cw Ar laser ) =0.5um
(O.me) 7.5W @ 15cm/s
" 0.41-0.47 pm_ 350 -17o°§ 5 30°  540-575°C 6
(100) Si on (1102) 350 10 0 or 7° in vacuo
" 0.37 pm (100) 300 RT 16 0°  cw Ar laser, ) =0.5um 7
Si on (0112) 7W 5&15 cm/s
" 0.2 pm (100) -
si on (01T2) (D160 13 2)560°C for 40min 8
@ 80 20 567°C for 102min
Toshiba ;m( 00) 190 10 1000°C for 20 min in N, 9
on ( 12) regrow surface
' subsequent 1000°C anneal
" 0.3 amorphize Si-sapphire interface
-0 190 1000°C for 20 min 10
amorphize Si surface N, ambient
100 20 second anneal
" 0.185 um Ssi (100) 120 liquid 4-300 isothermal anneal 11
on (1102) freon @ 600°C 10 40 min
also 1000° C some at 60min
0.3 pm 200 " 1 hour 900° c, 1000 o
& 1100°¢
3
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were mounted with Dow Corning heat sink compound RTV 340, the rest with rubber
15 ions/cm2 ® 180 keV. Fiqure
20 shows the rubber cement mcunting. The amorphous region lies between 150 and 250

cement. Both types of mounti:y were used at 1 x 10

nm. Figure 21 shows the Dow Corning 340 mounting. In this case the amorphous region
extends from about 80 to 300 nm. These two figures show rather dramatically that the
rubber cement mounted samples heat up and partially anneal out the amorphous region.
1% ons/cm’ @ 300 kev.

The Dow Corning mount is shown in Figure 22. There is a partially amorphous region

Both types of mounting were also used for dosages of 5 x 10

between 290 and 390 nm. The rubber cement mounting is shown in Figure 23 with only a
slight partially amorphous region. Experimentally the Dow Corning 340 was removed
with trichloroethylene. Then the implanted side of the sample was cleaned with four
rinses, viz, 1, Basic H, 2. trichloroethylene, 3. acetone, and 4. methanol.

14 ions/cm2 @ 250

@ 300 keV, In both cases, apparently enough heat

Rubber cemented samples are shown in Figure 24 with 5 x 10
keV and in Figure 25 with 2 x 101%
was generated from most of the damage to anneal out. It is interesting to note that

at 300 keV, the damage was almost completely annealed out at a dose of 2 x 1014

ions/cmz, but not at 5 x 1014.

A concise summary of the above work is given in Table 2.

To set a upper 1imit on the temperature rise of an isolated target, we calculate
the temperature rise of the target if all the energy of the incident beam is
converted into heat. If all the energy of the beam is transferred to heat in the
target, then

n(ions/cmz) Eo(keV) = C(joules/g K) (g/cm3) t (cm) 4T,

where C is the heat capacity, o the density, t the thickness, and AT is the
temperature rise. From Touloukian & Buyco (Reference 39), the heat capacity at room
temperature is C = 0.1650 cal/g K = 0.691 joule/g K. The density of silicon is
p=2.3 g/cm3 and its melting point is 1685 *2 K. 1 eV = 1,602 x 10'19 joules.
Thus

AT = n E(in key%_ 1.008 x 10716 «
m

t (in ¢

30
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SECTION IV
RECOMMENDATIONS

If Dow Corning heat sink compound 340 works at liquid nitrogen temperature, it
is a superior mounting medium to rubber cement for amorphization work.

The Tandetron implanter needs a cooling system for targets in order to achieve
desired amorphous regions. This project is already under way and should be in use

before this report is printed.




AFWAL-TR-84-4115

SECTION III
SUMMARY AND CONCLUSIONS

A number of Si into Si implant conditions were studied to ascertain the
conditions necessary to amorphize 0.3 and 0.5 micron thick Si films for subsequent
recrystallization studies. The conditions found for the Avionics Laboratory, Varian
400-10AR Ion Implanter are all cases where the sample was mounted with rubber cement
and the dewar was filled with liquid nitrogen. Later studies suggest that Dow
Corning heat sink compound RTV 340 is a superior mounting arrangement, especially at
room temperature. For 0.3 micron thick Si films, the best combinations for
amorphizing the film are:

5 x 1014 jons/cm? @ 150 keV
5 x 1012 @ 180
2 x 104 @ 200.

For 0.5 micron thick Si films, the combinations are:
14 2

5 x 10" ions/cm @ 250 keV
5 x 1014 @ 275 (maybe no surface left for seed)
2 x 10142 x 10'% @ 300 keV/120 keV.

Apparently most samples run on the Tandetron, which had no means of cooling samples,
heated up and annealed out much of the amorphous region except for the lowest energy
and dosage case of 5 x 1014 ions/cm2 @ 180 keV which gave results similar to the

Varian. Substrate temperature appears to be as important a parameter as ion energy

and dosage in determining the depth and amount of amorphization.
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If we assume that the thermal conductivity is high enough for complete heat

dispersion, we have t = 0.05 cm, n = § x 1014 ions/cmz, and E = 200 keV, AT = 202

K.

The typical SOI case has a silicon film on an insulating substrate, thus if we had a
0.5 micron thick films, AT = 2.02 x 105 K; more than enough to melt the film. The
RBS results on uncooled samples indicate an anneal which must have reached 500 to
1000°C. Thus we conclude that much of the heat generated must have been localized in
the region of damage.
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TABLE 2 (Concluded)
fzeizz Dose = loll‘ions/cm2 Depth of region amorphized

1.7 Mev Tandetron accelerator ( all samples room temperature and above)

180 10 60-280 nm

250 5 200-260 nm ? maybe only partially

300 2 pretty much like single crystal

300 5 pretty much like single crystal
38
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TABLE 2. SUMMARY OF Si* IMPLANT CONDITIONS STUDIED. ALSO REGION OF DEPTH
WHERE TARGET IS AMORPHIZED

Energy Dose ¥ lOlaions/cn2 Sample

Depth of region amorphized
in keV Temperature .

VARIAN 400-10AR Ion Implanter (all samples mounted with rubber cement except '
last two where Dow Corning heat sink compound RTV 340 was used)

150 1 LNZ region around 130nm partially
amorphized

150 2 LN2 100-160 nm 7

150 5 LNz 0-220 nm

180 5 LNz 0-280 nm

180 10 LNZ 0-325 nm

200 0.5 LNZ -

200 1 LNz region around 220 nm partially
amorphized

200 2 LNZ 80-230 nm

200 5 LNz 50-320 nm

250 1 LN2 region around 220 nm partially
amorphized

250 2 LNz 120-300 nm

250 5 LNZ 0-375 nm

275 5 LNz 0-380 nm

275 10 LN2 0-400 nm

300 2 INZ 100~450 mm

300/120 2/2 LNZ 0-450 nm

300 5 LNZ 0-420 am ?

325 10 LNZ 20-500 nm

180 10 RT 150-250 nm

250 5 RT pretty much like single crystal

300 2 RT pretty much like single crystal

300 5 RT region around 400 nm partially
amorphized

180 10 RT 90-300 nm

300 S RT region around 330 nm partially

BRI R It S ]
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